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PERFORMANCE OF CONJUGATE GRADIENT-LIKE ALGORITHMS IN
TRANSIENT TWO-PHASE SUBCHANNEL ANALYSIS

JOHN A. TURNER® AND J. MICHAEL DOSTER!

Abstract. A transient, drift-flux subchannel analysis code (SWIRL) has been created for the development and
evaluation of algorithms for the solution of weakly three—dimensional fivid flow problems. Spatial discretization on a
staggered grid, semi-implicit temporal discretization, and algebraic reduction of the conservation equations of mass,
energy, and momentum result in nonsymmetric block-tridiagonal linear systems of equations that must be solved
for the pressure distribution at each time step of a transient. The solution of these systems of equations is the most
time—consuming portion of the code, and direct, stationary iterative, and preconditioned conjugate gradient (CG)-
like methods have been investigated both for a simple approach to ateady-state and for a severe transient. The best
direct algorithm appears to be an efficient implementation of block elimination, and iterative methods are compared
to this algorivhm for accuracy, robustness, and efficiency. Results presented here indicate that preconditioned CG-like
methods such as Sonneveld’s conjugate gradients squared are superior to an efficient direct inethod.

Key Words. Subchannel analysis, drif:-flux, semi-implicit, nonsymmetric linear systems, block-tridiagonal
linear systems, preconditioned conjugate gradients, conjugate gradients squsred.

1. Introduction. Subchannel analysis is arguably the most widely used method of modelling
the thermal-hydraulic behaviour of fluid flow parallel to rod bundles, as occurs in the cores of
nuclear reactors. In this approach, the flow field is divided into a number of quasi~one-dimensional
subchannels that communicate laterally by crossfiow due to both non-unii>rmitics in the radial
pressure distribution and turbulent mixing. Examples of codes based on the subchannel analysis
philosophy abound, the most well-known being the many versions of tl.2 Battelle Pacific Northwest
code COBRA ([26, 27, 28, 29, 2, 42, 15]), the COBRA extension VIPRE [39, 40], SABRE-1 [25],
the French code FLICA [13], the British code HAMBO [3], and the Westinghouse code THINC
(43, 4]. A major strength of the method is its versatility. Subchannels are defined only by flow
area aud wetted perimeter, so the exact shape of the channel is not needed, and lateral connections
are defined by width and distance between subchannel centroids. Since there is no momentum
coupling of crossflows, discrete lateral coordinates and lateral boundary conditions are not needed.
A crossflow exists and has its direction defined by the two subchannels it connects. As a result,
triangular and hexagonal lattices can be simulated as easil.' as square lattices.

It should be mention. d that other approaches have been used for red-bundle thermal-hydraulic
analysis. Sha [33]) compares subchannel unalysis to the porous medium formulation used in the
COMMIX series of codes [34, 35, 9, 8] and the boundary-fitted coordinate system approach used in
the BODYFIT codes (36, 6, 5]. Most complex is the full three -dimensional, six-equation, two-fluid
approach used in THERMIT [22], which solves the same equations as TRAC P1A (23]

These codes are, for the most part. large, mature production codes that have been developed
over many years. It is thus often diflicult to to significantly restructure these codes in order to
investigate alternative solution algorithms or performance on advanced architecture computers.
For this reason, a new code, SWIRL [41], has been developed to aid in this type of investigation.

2. SWIRL Numerics. SWIRIL uses a three -equation arift-flux model, in which thermal
equilibrinm is assumed and slip is treated as a diffusion like phenomenon {44]). The conservation
equations of mass, energy, and momentum are reduced ‘o a system of linear algebraic equations in
pressure as follows:
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1. Discretize spatially and integrate over appropriate control volumes to chtain a set of ordi-
nary differential equations.

2. Reduce to a set of linear algebraic equations by using a semi-implicit time advancement
scheme.

3. Algebraically reduce to a single system of linear equations in pressure only.

2.1. Spatial Diccretization. The conservation equations of mass, internal energy, and mo-
ment im are:

Continuity
p —
—67+ V-(pt) =0 (1)
Internal Energy
8 — — —
(pu) + V- (pui) = —PV -7+ V§ (2)
Axial Momentum
a = m. 0P =
5PV} + Vo (pVO) = ~2=+ Vi +pg (3)
Lateral Momentum
0 — 0P —
g (Pw) + Vo (pwd) = -2+ V-5, . (4)

Now consider the computational grid in Figure 1 showing three axial levels of two adjacent
subchannels. Following standard practices (see [21] and [10], for example), a staggered mesh is
defined such that scalar quantities (density, pressure, void, etc. ) are defined at the centers of
computational cells (1,k —1; 5,k —1; tk; jk; i,k 4+ 1; and j,k+ 1 in Figure 1) and vector quantities
(velocity, mass flux, efc. ) are defined at cell boundaries (i,k—4; j,k— }; s,k + 4; and j, k + } for
axial mass flux, and 15,k = 1; ijk; and 17,k + 1 for lateral mass flux).

The continuity and internal energy equations are integrated over, for example, computational
cell 1k, bounded axially by i,k — ; and i,k + ;, and the axial momentum equation over, for
example, computational cell 1.k + %, bounded axially by sk and i,k + 1, define average quantities,
and approximate the products of averages with the averages of products. The control volume for
lateral momentun is centered axially and staggered laterally, so the lateral momentum equation
is integrated over, for example, cell 17k, with axial boundaries ij, k — % and ¢j,k 4 ; and lateral
boundaries at thk and jk.

Integrating the four equations over the appropriate control volumes, defining appropriate mix-
ture quantities, and rearranging to include drift flux terms yields the following set of first-order,
non linear, ordinary differential equations:

Continuity

]
A,

dp
A: ik + {(’,‘.).,H! - (,)")"*_4} +

dr Z(Ar)u(ﬂu’)uk =0. (5)
)
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(6)

(M

and w' is the crossflow velocity due to turbulent mixing. The assumption is that crossflow is
separable into flow due to pressure imbalances between subchannels and flow due to turbulent
mixing. This is not strictly a turbulence model, but simply an empirical attemp! to account for
turbulent exchange of energy and momentum. Turbulence is assumed to result in no net mass

exchange.

jal Momentym

82 20V )ury + {(0VDiber = BV}

F O, ).

1l « , 1 ’ ’
+A—:_ L(Ac)u(f" u').,,n; + A—r. z}:(Ar)i: [(I’" ).',k+} = (PV),,H;]“’.',‘,HQ =

'

(rwhlulayi
—_—d

= (Pox4r = Pu) - [ ] Az + ;,-.H;gAZ .
26

As,
where
2y _ (PV)aloV),
(PV)y = Py '
- 1 , ,
(PV ) = .‘2[(1" Ja-g (P ).,H;] '
and

(V) y i (PV) > 0

(p\').‘“! if (p‘\').* < ()
4

(I’-i' )i

(8)

(9)

(10)

()



Similarly,

(pvw)u k+!— = pw)uk-{-!- Jk+i~ ’ (12)

where

(oV);
ij.k+} = ﬁ;ﬂ ’ (13)
Pijk+}
(Pi").'j,ug = %[(PV).'.H; + (PV)',H;] ’ (14)
;i,'.k+§ = %(;.'.H; + ;,',M-}) ’ (15)
and

~ (pw).-,-,, if V’ >0
(Pwhins = { (Pw)ijiks: 'f‘u.:I: <0 o

For the frictional pressure drop term, the standard procedure of multiplying the equivalent saturated
single-phase loss by a semi-empirica.llv determined two-phase multiplier, ¢3,. is used. Thus,

z(I’V)2 !u
[¢ 2‘ AZ)] +§. (17)

(Tw | k+
A;,

Lataral Momentum
d
Az (pw)ok + {(PV W) kpy = (V)0 } =

() g - [c508] v

Following VIPRE methodology, pressure loss through the gap is computed using an overall loss
coeflicient k, due to the complex geometry of the gap and the difficulty in determining an appro-
priate lateral friction factor [39). The coeflicient accounts for friction as well as forms loss due to
the area change The flow is assumed to be homogeneous in the lateral direction, and, as in the
axial momentum equation a, tvo -phase friction multiplier is used to compute the lateral pressure
drop. Thus,

[(Tu w) ik [ 2(,{,"") k, (19)
(Ara ) 2(m)* ar
where ()], is laterally donored as in luquhtmn 7 for u;),.
Note the following, assumptions inherent in the above equations (in addition to those previously
mentioned):
1. Axial flow areas are constant along a subchannel.
2. The Zuber Findley void quality relation holds in the axial direction.
3. Heat conduction through the fluid is negligible,
4. Axial turbulent mixing is negligible.
h. Crossflow is smiall relative to axial flow, so that the (pww) term in the lateral momentum
equation can be neglected,



2.2. Temporal Discretization. Temporal discretization is semi-implicit; i.e. , time deriva-

tives are expanded such that the resulting equation set is linear in the new-time variables (see

(21)

and [10), for example). With some exceptions, pressures and velocities (or in this case mass fluxes)
are evaluated at the new time level and convected terms at the past time level. This scheme imposes
a time-step limit based on the material transport time, or Courant limit [21), and results in the
following system of linear algebraic equations, in which all terms without a time level superscript

are evaluated at the present time level.

Continuity
Az 1
e - pu) + { (V1424 - (Vs } + 1 L Adu(pulift =
'

Internal Energy

A lowtt® = (o] + {VIE8Y Ty - VIR Ty b
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Lateral Momentum

2:[/711])??' (w)se] + {(PV0)isasy ~ (Vdiguoy} =

t'
( ) ( t+A¢ t+At) \Twa)ijk Ar i (24)
A"x (Afs )ij 2¢ Y
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(Twa)ijk] [ " |(pw)| k,] AL
Jio ()" - (25)
[ (Ar)ii )oe op, Ar ik 3k

2.3. Equation of State. As in RELAP5/MODi [12], an equation of state of the form p =
p(pu, P) provides closure. To preserve the lincarity of the rest of the equatior set, the density
relationship is linearized by expanding in a two-term Taylor series expansior about the old time
level. Following RELAP5/MOD1 methodology,

(26)

i)
pitat = ot 4 [(pu)”m _ (pu)'] a_% . + (Pt

Pt
) BP “pu

2.4. Algebraic Reduction. The system of linear algebraic equations given in Equations 20
through 24 could be posed as a matrix equation and solved for all new time variables (P, p, pu, pV,
and pw) at once. However, the size of the system can be reduced and the structure of the coefficient
matrix improved if four of the new time variables are eliminated in favor of the remaining one. This
approach adds a back substitution step following the solution of the linear system to obtain the
remaining new time level values.

This results in a single system in the spatial pressure distribution at the new time level:

@41 LPEAL 4 b, P?k+A'+a.-'k+1P“{f,‘ +Ec,,k PiAt = S, . (27)
i)

The first three terms of Equation 27 represent the pressure distribution in the axial direction and the
summation term represents communication in the lateral direction. The coefficient matrix can be
shown to be block -tridiagonal, with diagonal off-diagonal blocks. For example, consider the 1/8%
section of an 8 rod by 8-rod BWR assembly shown in Figure 2. For a subchannel analysis model
with three axial nodes the coefficient matrix has the sparsity pattern shown in Figure 3 (shaded
squares represent non-zero elements). Note that the bandwidth of the main-diagonal blocks is
equal to the maximum difference in the indices of any two adjacent subchanneis (in this case four).
For a rectangular array the main-diagonal blocks become five-banded, and in the general case the
main diagonal blocks are diagonal with unstructured ofl- diagonal elements. Note that the matrix
is geometrically but not numerically symmetric, and that each main diagonal block represents a
two dimensional axial slice across the channel. If N, denotes the number of subchannels and
Na; the number of axial nodes, the size of the system is

thnn )(Nar ) by (]vr:hnn )(Nnr ) . (2H)

A typical BWR fuel assembly has 64 fuel rods in an 8 by & array, yielding 81 subchannels. Use of
4R axial cells (which results in approximately 3 inch cells) requires solution of a linear system with
385K unknowns at each time step (forty eight 81 by 81 blocks).

7



Fit. 3 Structure of coeflicient matrir for o subchannel analysis taodel of a 1/8" section of an B.rod by 8-rod BWR
assembly using three anval nodes
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FiG. 4. Block form of matriz system.

D] = A;IC] y E] = A,"Sl
Forn = 21to Nogr — 1:
Dn = (An - Bn—l Dn—])—lCn
E, = (An - Bn—an—l)—l(Sn - Bn—lEn—l)
EN.. = (ANee = BNo,-1DN,=1) "N (SN, ~ BN, —1EN,,-1)
XNoy = EN,,
Forn= N, —1to1:
Xn=E, - Dan-H

FiG. 5. Block elimination algorithm.

2.5. Time-step Control. Time-step contro! is implemented to maintain stability of the
solution and to ccntrol linearization error in the solution (the error introduced by linearizing the
state equation). To control the error in the solution the difference between the mixture density
as computed by the system and the density as computed by the equation of state is monitored.
Stability is assured if both the lateral and axial Courant limits are satisfied for the durztion of
the simulation. The lateral Courant limit often becomes the most restrictive for simulations with
even moderate crossflow since lateral computational cells are often small. However, we have found
that the lateral Courant limit can be relaxed completely, and the system will converge to identical
steady-state conditions even for severe flow blockages. This improves run times significantly.

3. Solving Nonsymmetric Block-Tridiagonal Linear Systems.

3.1. Direct Methods. The most efficient direct solver to date is a variant of block elimina-
tion, which can be considered an extension of the classic algorithm for tridiagonal systems. If the
block system is indexed as shown in Figure 4, such an extension is shown in Figure 5, in which
A,. B,. and C, are the n* main-diagonal, sub-diagonal, and super-diagonal blocks of the coef-
fi "~nt matrix, respectively, and X, and S, are the n** blocks of the solution and source vectors,
respecy cely. One iniplementation used in SWIRL, referred to as BTD;,,,, , takes advantage of the
diagonal off-diagonal blocks in the matrix multiplications and performs the inversions explicitly.
The resulting operation count for BTD,,,,, is O(2NuN3,mn),

BTD,,, has proven to be superior to other direct methods both on single processor and few-
CPU, shared memory, pipelined vector machines. For a discussion of other implementations of
block elimination and other direct methods such as banded elimination, cyclic reduction, and
para'le] partition methods see [41].

3.2. Conjugate Gradient-Like Methods. Conjugate gradient (CG) and CG-like methods
have seen renewed interest in recent years, particularly when combined with appropriate precon-
ditioning, schemes. Though the classic CG algorithm is only applicable to the solution of linear
systems with symmetric positive definite coeflicient matrices, many CG like approaches have been

9



w=p4- Azg

solve Mrg = w

g=u=py=719

pPo = (g, 7o)

rort = 0,1, ..., until convergence:
solve Mw = Ap,

a = P./(q, ‘I.D)
h=u-aw
u=(u+ha
Zipi=zitu

solve Mw = Au

Tiv1 =i —w

err = |Iris1lloo/lziv1ll

if err < ¢ => converged
Pi+1 = (g, Tis1)

B = pis1/pi

u=ri 1+ 0h

Pi+1 = u+ B(Op. + h)

FiG. 6, Conjugate gradients squared (CGS) algorithm (combined and modified form of \ *rsions given in [38], [$7],
and [7]).

developed for nonsymmetric linear systems. Saad has classified many of these methods into the
following four subgroups within the larger group of Kryiov subspace methods [31;:
1. The full orthogonalization method (FOM) [30], GRTHORES, and Axelsson’s method [1).
When the coefficient matrix is symmetric, standard CG falls into this catagory.
2. The conjugate residual method (e.g. {17] and [18)) and GMRES [32).
3. Bi-conjugate gradients (BCG) [14] and conjugate gradients squared (CGS) [37).
4. CG applied to the normal equations (AT Az = ATb),

For this work. Sonneveld’s CGS algorithm, shown in Figure 6, is used. Note that Az = b is
the system being solved, zo is an initial guess for the solution vector (taken to be the pressure
distribution at the past time step), M is the preconditioning matrix (a matrix which is “easy” to
factor and in some way “close” to A), and r, are residual vectors. The ratio of the infinity norms
of the residual and solution vector is used as a stopping criterion, as in {7]. A complcte description
of the algorithm and its relationship to other CG methods is given in [37). CGS has been shown to
perform well in comparison with other CG-like methods in several recent papers {37, 20, 19, 16).

CGS has been implemented in SWIRL for the ¢pecial case of rectangular lattices, which, as
explained in Section 2.4, result in seven-banded coefficient matrices. This allows the use of efficient
matrix- vector multiplicatiuns in the algorithm. This is not as restrictive as it might srem at first,
since even in the general case there are never more than seven nonzero ele.jents in a row or column
of the coeflicient matrix (as long as each subchannel is connected to at most four other subchannels),
so seven- banded matrix -vector multiplication could be used even in that case, but indexing would
be somewhat more complicated. Using simple diagonal preconditioning with this implementation
yielde the algorithin CGS74 , with an operation count of O(42N,; Vepan Niter). This implies that
the number of iterations required to beat BTD,,, is O(N3, . /21).

Resalts will be presented for a more innovative preconditioning scheme, however. Early in this
work it was observed that even though the elements of the coeflicient matrix change at each step
in a transient and thus must be recomputed at each step, the spectral radii of iteration matrices

10



i=A7

D, = ACh

Forn=2to Ny, --1:
A% = (An = Bno1 Dpoy)™!
D, = A;C,

Fi6. 7. Factorization stage of block elimination algorithm.

E] = A:Sl
Forn =2 to N,;:
E,= A:(Sn - Bn—lEn-!)
XNas = ENg,
Forn = Ngz~1to 1:
A’ﬂ = En - anrn+1

FiG. 8. Elimination stage of block elimination algorichm.

for stationary iterative methods remain essentially constant *hroughou* a transient. Though the
convergence of CG-like methods is dependent on properties e eigenspectrum otner than the
spectral radius, it seems appropriate to attempt to make use . us property.

One way to accomplish this is to factor the coefficient matrix at one time step, use that
factorization to solve for the pressure at that time sip, the. use the factorization (or part of it) as
the preconditioner for CGS in future advancement attempts. The darger in this approach is tlat
in a severe transient the coefficient matrix might change enough to cuuse CGS to be very inefficient
(or to fail to converge). In an attempt to minimize such effects this stra'egy was implemented so
that whenever CGS reauires more than a specified number of iterations (which will be denoted
L....). a new preconditioner is obtained at the next advancement. Thus, if thic iteration limit were
set at zero, SWIRL would alternate between using the direct method and CGS.

To implement this scheme, which will be referred to as past factorization preconditioning,
recall the block elimination algorithm from Figure 5. Note that the algorithm can be split into a
factorization stage and an elimination stage, as shown in Figures 7 and 8. The scheme is then as
follows:

1. For the first attempted time step, the linear system is solved by BTD,,, and the block
factorization, stored in A;, and Dy, saved.

2. The coefficient matrix from that attempted advancement is then used as a preconditioner in
CGS for subsequent advancement attempts. That is, A% and D, contain the factcrization
of the preconditioning matrix M from Figure 6, so solution of the two linear systems in
each iteration of CGS (Mw = Ap, and Mw = Au) require only the forward and backward
sweep shown in Figure R,

3. The number of iterations required for convergence is monitored, and if it exceeds some lirait,
the next advancement is again solved by BTD,,, . In the process the block factorization
of a new (and hopefully better) preconditioner is obtained.

We call this PBLU preconditioning, since a Past time step Block LU decomposition is used. When
PBLU preconditioning is used with the seven banded version of CGS, the algorithm is called
CGSTy . and has an operation count of O((RNax N2, + 46 Nar Nepan ) Nuger ), implying a breakeven
number of iterations (compared to BTD,.. ) of ((Nipan/4). Note that a more robust approach
might be to monitor the progress of CGS and foree use of the direct method if ihe iteration appears
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Fi6. 9. Marimum relative change in pressure and time step used at each in the transient described in Section 4.2.

to be stalled or diverging.
4. Test Problems.

4.1. Approach to Stcady-State. For this problem SWIRL is executed in steady-state mode
with inlet mass lux / outlet pressure BCs on a PWR-type assembly. That is, the assembly is square
and cpen, with geometrically identical subchannels. Power distribution is uniform radially and a
chopped cosine axially, with a peak linear heat additior rate (¢') of 5.44 kW/ft, the average value
for McGuire Nuclear Station [11]. Note that the fluid remains single phase and that little crossflow
occurs under these conditions. The simulation is repeated for assemblies ranging from a 3-rod by
J-rod lattice (4 subchannels and 4 gaps) to a 10- rod by 10-rod lattice (81 subchannels and 144
gaps).

4.2. Severe Transient. The geometry is the same as for the steady-state test case, but
vnly the 10 rod by 10 rod size is used. SWIRL is executed in ransient mode with inlet mass
flux / outlet pressure BCs and initial conditions set hy SWIRL. The maximum normal linear heat
addition rate given for McGuire, 12.5 kW/ft. is used [11], and again the power distribution is
uaiform radially and symmetric axially At 0.15 seconds into the transient, the following four
events occur simultaneously:

1. A flow obstraction of & = 2 is introduced in a subcaannel near the edge of the assembly,
about halfway up the channel (z = 70 inches),

2. inlet mass flux undergoes a step decrease of about 20%,

3. outlet pressure drops by almost 15%, and

4. core power uniformly jumps 10%.

The relative change in pressure and the time step used for each advancement are shown in
Figure 9, which demonstrates the severity of the transient. The exit void fraction in the channel
with the flow obstruction exceeds .35,
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5. Results. An Alliant FX/4 with four Computational Elements (CEs) and a 256I{B cache
was used for the following results. The operating system and compiler versions used were Concentrix
5.0.0 and FX/Fortran 4.2.40, respectively, and compiler options ~0gvc -DAS were used. We have
found that aithough the theoretical peak computational rate for this configuration is nearly 48
MFLOPs, the best that can be expected in a real code (even one that is highly vectorizable and
parallelizable by the compiler) is closer to 9 MFLOPs.

6.1. Determination of Parameters for CGS7, . Before CGS7 with PBLU preconditioning
can be compared with BTD,,, , the convergence criterion, ¢, and the iteration limit, L,¢,r, must
be determined. The appropriate convergence critcrion was determined first, by using SWIRL /
CGSTy to model the severe transient described in Section 4.2 with convergence criteria of 10-7,
10-%, 107%, 107, and 10~!'. Those results were then compared with those obtained from
SWIRL/BTD,,, - The exit void fraction in subchannel 5, shown in Figure 10, indicates that
the appropriate value of ¢ is 109,

To determine the optimal value of L., the convergence criterion was set to 10~%, and the
transient was repeated for L, = 1,2,...,15. Total CPU time as a functioa of L, is shown in
Figure 11, along with the total number of preconditioners required throughout the course of the
transient. Though Ly, = 6 yiclds the minimum total CPU time for this particular transient, it
apprars that values ranging from 6 to 11 are reasonable. Note that all values of L., > 12 are
equivalent, since only two preconditioners are obtained: one at the start of the transient and one
just after the event at t = 0.15 seconds. The fact that the curve is not smooth is not surprising
since that relationship between CGS, the preconditioner, and time-satep control in SWIRL is quite
complex.

5.2. SWIRL/CGST, va. SWIRL/BTD,,,, . When the optimal choice of L, is used, the
simulation is completed in only 235 seconds, or 1.8 times faster than SWIRL/BTD,a. (even the
worst choice for the iteration himit, Ly, = 1, is superior to SWIRL/BTD,,,, , which requires over
421 seconds to model the transient). The CPU time uted for each time step in the simulation
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Fii. 11. SWIRL/CGS7, total CPU time and number of precondition=rs required during tranasient described sn Sec-
tion 4.2 for ¢ = 10~° and various iteration hmats.

is shown in Figure 12 for SWIRL/BTD,,, and for SWIRL/CGS7, . Note that the CPU time for
SWIRL/BTD,n. is constant unless an attempted advancement fails and must be repeated with a
smaller time step. The effect on SWIRL/CGS7, of obtaining a new preccnditioner is clearly shown,
particularly at step number 27, where the CPU time per time step drops siguificantly following
the computation of a new preconditioner. Interestingly, SWIRL/CCS7, completes every time step
faster than SWIRL,/BTD.,. , even at the time of the event.

The superiority of SWIRL/CGS7, is even more pronounced on a less severe transient. Fig-
ure 13 shows the four CE vector CPU time per time step on the steady-state test problemn.
Note that for the 81-subchannel problem, SWIRL/CGS7, is approximately 3.5 times faster than
SWIRL/BTD,, .

6. Conclusions. This work demonstrates that CG-like methods can be efficient and robust
for reactor thermal hydraulic simulations. Nevertheless, much work remains. In particular, the
following areas are currently under investigation:

1. Oiher preconditioners, including standard incomplete LU-decomposition and variations
on PERLU such as PBILU (in which only part of a past factorization is used) are being
implemented and compared with PBLU.

2. Other CG like methods such as GMRES and ORTHOMIN are being implemented and
compared with CGS.

3. A complete investigation of the eigenvalu~ spectrum of the coefficient matrices generated
by this problem is underway. One concern is the effect of changing the implicitness of the
temporal diseretization or implementing a Courant violating scheme guch as the stability
enhancing two ste method (SETS) [24] would have on the eigenspectrum. This informa
tion will aid in understanding the performance of various CG like methods.
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7. Nomenclature.

A lateral cross sectional flow area
A; axial cross sectional flow area
A, axial flow area of gap—centered computational cell
Ly hydraulic diameter
Tie single phase friction factor
gz gravitational constant
ib drift flux
k axial forms loss coefficient
I pressure
P, wetted perimeter
Qu wall heat transfer rate
Ar distance between adjacent subchannel centroids
At time step
u internal energy
| 4 axial velocity
v velocity in arbitrary direction
w lateral velocity
z axial computational cell length
a void fraction
p density
o shear stress
Tu wall shear stress
Subscripts:
t subchannel of interes:
J adjacent subchannel
ij gap between subchannels 1 and j (in some instances also implies

direction, t.e. , from subchannel i into subchannel j)

k axial location
l liquid phase (also occasionally used as a superscript)
g vapor phase (also occasionally used as a superscript)
r lateral quantity
Superscripts:
t+ At new time value
t mixed implicit explicait quantity
® laterally donored quantity

Other Notation:

~ axially donored quantity
Z summation over all adjacent subchanneis
J
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